6237

BOARD DIPLOMA EXAMINATION, (C-16)

MARCH/APRIL—2021

DEEE - THIRD SEMESTER EXAMINATION

ENGINEERING MATHEMATICS - II

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- 1. Evaluate $\int (3x^2 + 2x + 5) dx$
- **2.** Evaluate $\int \frac{e^{\sin^{-1}x}}{\sqrt{1-x^2}} dx$
- **3.** Evaluate $\int_0^1 (x^2 + 1) dx$
- **4.** Find the area bounded by the curve $y = x^2$ from x = 2 to x = 3.
- **5.** Find $L\{t^3 3t^2 + 2\}$.

6. Find
$$L^{-1} \left[\frac{1}{(s-1)^3} \right]$$
.

- 7. Find the value of a_0 , if $f(x) = x^2$ in the interval $(-\pi, \pi)$ by Fourier series.
- **8.** Find the differential equation to the family of curves $y = A\cos 2x + B\sin 2x$ where A, B are arbitrary constants.
- **9.** Solve : $x^2 dx + y^2 dy = 0$
- **10.** Solve: $(D^2 4D + 4)y = 0$

PART—B

 $10 \times 5 = 50$

Instructions: (1) Answer *any* **five** questions.

- (2) Each question carries ten marks.
- **11.** (a) Evaluate $\int \cos 4x \cos 2x \, dx$
 - (b) Evaluate $\int \frac{dx}{5+4\cos x}$
- **12.** (a) Evaluate $\int x^3 e^x dx$
 - (b) Evaluate $\int_0^{\frac{\pi}{2}} \log \tan x dx$

/6237

[Contd...

- **13.** (a) Find the RMS value of $\sqrt{8-4x^2}$ between x=0 to x=2.
 - (b) Find the volume generated by the revolution of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ about X-axis between the limits x = 1 to x = 2.
- **14.** (a) Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Trapezoidal rule by taking 5 equal parts.
 - (b) Find $L\left\{t^3e^{-3t}\right\}$
- **15.** (a) Find $L^{-1}\left\{\frac{3s+13}{(s+1)(s+3)}\right\}$
 - (b) Find $L^{-1} \left[\frac{1+2s+s^2}{s^3} + \frac{s-1}{s^2+4} \right]$
- **16.** Find the Fourier series of f(x) = x in the interval $(0,2\pi)$.
- **17.** (a) Solve: $(y^2 + 2xy)dx + (2xy + x^2)dy = 0$
 - (b) Solve: $\frac{dy}{dx} + \frac{2y}{x} = \frac{1}{x^2}$
- **18.** (a) Solve : $(D^2 4D + 5)y = e^{3x}$
 - (b) Solve: $(D^2 + 9)y = \cos 2x$

* * *

/6237 3 AA21-PDF